If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2+57n=-56
We move all terms to the left:
7n^2+57n-(-56)=0
We add all the numbers together, and all the variables
7n^2+57n+56=0
a = 7; b = 57; c = +56;
Δ = b2-4ac
Δ = 572-4·7·56
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-41}{2*7}=\frac{-98}{14} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+41}{2*7}=\frac{-16}{14} =-1+1/7 $
| .26x+.34=13.42 | | x=7-3x | | 1/4(8x+16)=1/5(5x+25) | | 4^x-2^x-1=8 | | 3/10-7/y=3y-70/10y | | 3x+3=219 | | 17+4h+2=5h | | 7*16^(x-1)=97 | | 11x^2-23x-84=0 | | t2+13t–14=0 | | 12^(x+5)=28.4 | | 10=14-4(x-2) | | t-9.35=5.45 | | 5v+12=47 | | 12=w/4-15 | | y/3+8=18 | | X^2-10x-51=7 | | 0.5y=0.09-y | | D=35t-0.25 | | 5x+-14=10 | | D=35(t-0.25) | | D=35(t-0$25) | | 1/5(3x+6)=-9 | | 4(x-3)=4x-6 | | D=35(t+0.25) | | 5x+6(x+1)+4=10-2x | | 3x+4(x+1)=2x-1 | | D=35t+0.25 | | 6x-4+x=2x+41 | | 4m/5=205 | | 2x+45x=72 | | -u/6=-28 |